
17/07/2020 Instrumented Testing and the Zebra EMDK Barcode API – DARRYN CAMPBELL

darryncampbell.co.uk/2017/03/01/instrumented-testing-and-the-zebra-emdk-barcode-api/ 1/12

Instrumented Testing and the Zebra EMDK
Barcode API

 DARRYNCAMPBELL

Problem De�nition
One of the big challenges developing applications for industrial mobile computers is testing. Typically,
these applications will be built around data acquisition either through scanning barcodes, reading RFID
tags, taking credit card payment, capturing images via the camera or capturing form data
programmatically to extract text with OCR.

Any data capture will be challenging to test since it depends on manual interaction with the hardware. A
barcode will be scanned or RFID tags read by pulling the device trigger, credit cards will need to be
swiped with a reader generally connected via Bluetooth (with all the connectivity issues that further
challenge a tester) and images or forms captured with the camera depend on user interaction to focus the
camera and ensure the subject of the photo is in the field of view.

Consumer applications often rely on device emulators to expedite, automate and streamline their testing.
Emulators can mock data from the orientation sensors, camera, GPS location etc. but since no emulators
exist for industrial mobile devices and their data capture hardware, only a small portion of applications
targeting those can be tested before moving to a real device. The move to the real device will almost
always necessitate a corresponding move towards manual testing given the amount of physical
interaction with the hardware required.

1st March 2017 10 By

DARRYN CAMPBELL
Mobile computing and enterprise software development

https://darryncampbell.co.uk/author/darryncampbell/
https://darryncampbell.co.uk/2017/03/01/instrumented-testing-and-the-zebra-emdk-barcode-api/#comments
https://darryncampbell.co.uk/

17/07/2020 Instrumented Testing and the Zebra EMDK Barcode API – DARRYN CAMPBELL

darryncampbell.co.uk/2017/03/01/instrumented-testing-and-the-zebra-emdk-barcode-api/ 2/12

A Be�er Approach
Developers of consumer applications have for the longest time built automated testing into their
application from day 1. This blog makes no attempt to give an in-depth explanation of testing frameworks
since there are innumerable resources online for that and if you are looking for information on testing
Android applications a good place to start is Google’s own documentation at
https://developer.android.com/training/testing/index.html#start.

Testing takes two forms:

1. Local tests for individual algorithms and classes, these run within the local JVM and therefore do not

have access to Android APIs.

2. Instrumented tests which comprise of both unit tests and more complex user interface tests.

Instrumented tests run on the device.

On Android, it is recommended you would write your tests using JUnit and extend the capabilities of your
tests to handle UI interaction using the Espresso framework. Again, the Android documentation goes into
a lot more detail here and is essential reading for anybody unfamiliar with the topic.

THE GOAL IS TO CREATE AUTOMATED JUNIT TESTS WHICH EXERCISE THE DATA CAPTURE
HARDWARE.

Mocking the Hardware
In many industries, the solution to test code modules that depend on external hardware is to mock that
hardware, or at least the interface to it. As an application developer, to test data capture hardware in an
automated fashion you would either want a full emulator or at least be able to mimic the interface to that
hardware in your instrumented tests.

Unfortunately, as previously mentioned no full emulators are available for industrial mobility devices
and integration with test frameworks is not offered out of the box.

Options for Capturing Data
Concentrating on Zebra Android mobile computers such as the TC51 and TC75 there are a number of
ways to interact with the data capture hardware:

Through a dedicated Android API
Through a dedicated Xamarin API
Through a dedicated JavaScript API
Through Intents (DataWedge)
Through some combination of the above e.g. Android API + DataWedge.

And each device has dedicated hardware for capturing data:

Barcode scanner
SimulScan to capture form data and perform OCR

RFID reader (on selected models)
NFC reader (on selected models)
Bluetooth to connect with:

Payment devices
Barcode scanners
Printers
Etc.

https://developer.android.com/training/testing/index.html#start

17/07/2020 Instrumented Testing and the Zebra EMDK Barcode API – DARRYN CAMPBELL

darryncampbell.co.uk/2017/03/01/instrumented-testing-and-the-zebra-emdk-barcode-api/ 3/12

Card reader (on selected models)
USB connected hardware

Clearly a single testing solution to cover all scenarios is unrealistic and Zebra do not offer any test
variants of their device interfaces. It is therefore left as an exercise to the developer to mock the hardware
interface as required.

One Possible Solution
As previously mentioned, the number of combinations of API languages and data capture hardware is
large. I therefore present a single solution to the most common use case, testing barcode scanning
through the Android API. Obviously, it would be possible to mock other APIs but please take this as a
proof of concept.

The EMDK Barcode API
The EMDK Barcode API is the API used to interface with the barcode scanning hardware on Zebra mobile
computers and is documented here:

The main class (com.symbol.emdk.barcode) returns:

Status to the application via the Scanner.StatusListener
Data (decoded barcodes) to the application via the Scanner.DataListener
Scanner connectivity changes to the application via the
BarcodeManager.ScannerConnectionListener. This is used primarily for Bluetooth connected
scanners.

In order to test an application that utilizes the barcode scanner we need to be able to invoke these
interfaces with test data whilst running our instrumented tests, for example.:

// Click the start scan button
onView(withId(R.id.buttonStartScan)).perform(click());

// Simulate a barcode being scanned
mockedInterface.AddScanData(“123456789”);
ScanDataCollection scanDataCollection = mockedInterface.ReportScan(success);

// Trigger the data listener
activity.onData(scanDataCollection);

// Test that the correct data was scanned
onView(withId(R.id.textViewData)).check(matches(withText(”0123456789\n”)));

// Click the stop scan button
onView(withId(R.id.buttonStopScan)).perform(click());

It feels as though the Barcode interface was designed specifically to make it difficult to mock the returned
data, though I am sure this is not the case(!) The data types returned by the various interface methods
only have private constructors, for example the payload of the onStatus method is a StatusData object. In
order to mock the onStatus call we need to create a StatusData object but no public constructors exist
(even the default constructor) and there are no setters exposed on the public interface.

We are therefore required to use Java reflection to create these interface payload objects. Obviously
since this technique is not officially supported by Zebra there is a possibility they will change their internal
data structures or refactor the private code at some point but for the purposes of this blog, all samples
have been written to work with EMDK 6.0, the latest release at the time.

http://techdocs.zebra.com/emdk-for-android/6-3/api/
http://techdocs.zebra.com/emdk-for-android/6-3/api/reference/com/symbol/emdk/barcode/StatusData.html

17/07/2020 Instrumented Testing and the Zebra EMDK Barcode API – DARRYN CAMPBELL

darryncampbell.co.uk/2017/03/01/instrumented-testing-and-the-zebra-emdk-barcode-api/ 4/12

I have done the hard work of stubbing the listener payload objects in a helper class here: [Github Link].
There are a number of methods:

ReportStatus
Returns a StatusData object which can be passed to the StatusListener. Takes the desired
status as a parameter.

AddScanData
A single barcode scan (trigger press) can contain multiple decoded barcodes, for this reason
mocking a scan has two phases and in the first you call this method multiple times to add all
the data you want the scan to return.
Each call to AddScanData takes the barcode data you want returned, the symbology of the
read barcode and a timestamp.

ReportScan
Once all the barcode data has been given through AddScanData, call this method to return a
ScanDataCollection object with the mocked data. ScanDataCollection is the payload passed
to the DataListener. You can also choose to have the scanner report that the read failed
through this API.

CreateScannerInfo
Creates a mocked ScannerInfo object using the passed attributes to describe the scanner.
Defining a scanner takes a lot of attributes so you may wish to refer to the example at
[Github Link].
The onConnectionChange interface method takes a ScannerInfo object along with a
BarcodeManager.ConnectionState object to indicate whether that scanner is connected or
disconnected.

Worked Example
I have put together a very simple example of how to test the barcode scanner with mocked data:

The example is available on GitHub, https://github.com/darryncampbell/Instrumented-EMDK-
Barcode-Testing.

Clone the repository and load into Android Studio.
Take care to modify the app build.gradle file to point to your EMDK installation within your
Android add-ons directory.

You must run the sample on a Zebra mobile computer, you cannot run on an emulator as the
mocked interface depends on libraries available on the device.

If you have an older JellyBean device you may need to update the device runtime, see the
EMDK release notes.

The tests are built around Zebra’s ubiquitous BarcodeScanner1 sample project
Four tests are defined in the instrumented test file.

Testing a successful scan
Testing an unsuccessful scan
Testing reception of a status error whilst scanning
Testing a Bluetooth scanner disconnecting.

All tests make use of a helper class which encapsulates the logic of reflecting the EMDK interface
to create objects which can be returned through the listener interfaces, as described in the previous
section

https://github.com/darryncampbell/Instrumented-EMDK-Barcode-Testing/blob/master/app/src/androidTest/java/com/darryncampbell/InstrumentedEMDKBarcodeTesting/com/symbol/emdk/barcode/test/EMDKBarcodeStub.java
https://github.com/darryncampbell/Instrumented-EMDK-Barcode-Testing/blob/master/app/src/androidTest/java/com/darryncampbell/InstrumentedEMDKBarcodeTesting/com/symbol/emdk/barcode/test/EMDKBarcodeStub.java#L63
http://techdocs.zebra.com/emdk-for-android/6-3/api/reference/com/symbol/emdk/barcode/Scanner.StatusListener.html
https://github.com/darryncampbell/Instrumented-EMDK-Barcode-Testing/blob/master/app/src/androidTest/java/com/darryncampbell/InstrumentedEMDKBarcodeTesting/com/symbol/emdk/barcode/test/EMDKBarcodeStub.java#L103
https://github.com/darryncampbell/Instrumented-EMDK-Barcode-Testing/blob/master/app/src/androidTest/java/com/darryncampbell/InstrumentedEMDKBarcodeTesting/com/symbol/emdk/barcode/test/EMDKBarcodeStub.java#L123
http://techdocs.zebra.com/emdk-for-android/6-3/api/reference/com/symbol/emdk/barcode/Scanner.DataListener.html
https://github.com/darryncampbell/Instrumented-EMDK-Barcode-Testing/blob/master/app/src/androidTest/java/com/darryncampbell/InstrumentedEMDKBarcodeTesting/com/symbol/emdk/barcode/test/EMDKBarcodeStub.java#L186
http://techdocs.zebra.com/emdk-for-android/6-3/api/reference/com/symbol/emdk/barcode/ScannerInfo.html
https://github.com/darryncampbell/Instrumented-EMDK-Barcode-Testing/blob/master/app/src/androidTest/java/com/darryncampbell/InstrumentedEMDKBarcodeTesting/ExampleInstrumentedTest.java#L144
http://techdocs.zebra.com/emdk-for-android/6-3/api/reference/com/symbol/emdk/barcode/BarcodeManager.ScannerConnectionListener.html
http://techdocs.zebra.com/emdk-for-android/6-3/api/reference/com/symbol/emdk/barcode/BarcodeManager.ConnectionState.html
https://github.com/darryncampbell/Instrumented-EMDK-Barcode-Testing
https://www.zebra.com/us/en/support-downloads/software/release-notes/developer-tools/emdk-a-0603037-release-notes.html
http://techdocs.zebra.com/emdk-for-android/6-3/samples/barcode/
https://github.com/darryncampbell/Instrumented-EMDK-Barcode-Testing/blob/master/app/src/androidTest/java/com/darryncampbell/InstrumentedEMDKBarcodeTesting/ExampleInstrumentedTest.java

17/07/2020 Instrumented Testing and the Zebra EMDK Barcode API – DARRYN CAMPBELL

darryncampbell.co.uk/2017/03/01/instrumented-testing-and-the-zebra-emdk-barcode-api/ 5/12

10 Comments
 Este says:

2nd April 2017 at 12:54 pm

The proof of concept tests running on a TC55 device, mocking the scanner hardware.

Share this:

Related

Deploying an application to
Zebra Android devices ranging
from Jellybean to Marshmallow
and beyond

Writing Enterprise Android
applications that capture
barcode data and run on
multiple devices

DevTalk: DataWedge v6.3 -
Benefits and Challenges

16th January 2017
In "Zebra Technologies"

16th August 2016
In "Zebra Technologies"

16th August 2017
In "Speaking"

Category Zebra Technologies

Tags Android EMDK Testing

https://darryncampbell.co.uk/2017/03/01/instrumented-testing-and-the-zebra-emdk-barcode-api/#comment-9
https://darryncampbell.co.uk/2017/03/01/instrumented-testing-and-the-zebra-emdk-barcode-api/?share=twitter&nb=1
https://darryncampbell.co.uk/2017/03/01/instrumented-testing-and-the-zebra-emdk-barcode-api/?share=facebook&nb=1
https://darryncampbell.co.uk/2017/01/16/deploying-an-application-to-zebra-android-devices-ranging-from-jellybean-to-marshmallow-and-beyond/
https://darryncampbell.co.uk/2016/08/16/writing-enterprise-android-applications-that-capture-barcode-data-and-run-on-multiple-devices/
https://darryncampbell.co.uk/2017/08/16/devtalk-datawedge-v6-3-benefits-and-challenges/
https://darryncampbell.co.uk/category/zebra_technologies/
https://darryncampbell.co.uk/tag/android/
https://darryncampbell.co.uk/tag/emdk/
https://darryncampbell.co.uk/tag/testing/

17/07/2020 Instrumented Testing and the Zebra EMDK Barcode API – DARRYN CAMPBELL

darryncampbell.co.uk/2017/03/01/instrumented-testing-and-the-zebra-emdk-barcode-api/ 6/12

Thanks Darryn; this is a really useful post. I would have balled my eyes having blindly hit some of the
obstacles you’ve outlined – e.g. no out of the box test framework support / having to use reflection. I will
give this a go with the MC18 and I’ll let you know how I get on.

Reply

 Darryn Campbell says:

2nd April 2017 at 7:57 pm

Thanks, yes please let me know. Right now this kind of feature (automated testing) is not a priority for the
development team but that would change if more people were asking for it.

Reply

 Ernesto Gonzalez says:

20th June 2017 at 1:37 pm

Thank you Darryn, interesting information and I would ask you about the same test for Xamarin Android.
I’m working with TC55 and RFD8500. Obviously I cannot test TC55 with the emulator but right now we do
not have the physical device. My guess is about create a helper class (Android Callable Wrapper) for the
EMDKManager.IEMDKListener interface since the app has 5 modules and each are using barcode. I’ll
appreciate any comment or proposal. Thanks.

Reply

 Darryn Campbell says:

21st June 2017 at 9:03 am

Hi Ernesto, so for the Xamarin component, Zebra just wrap the Android Jar file from the EMDK so one
possibility would be to create your own binding (the process is explained here
https://developer.zebra.com/docs/DOC-2813) but full disclosure, I could never get that to work for myself
back in 2015 when the EMDK Jar was much simpler so that approach might be non-trivial!

The other difficulty you will have is the RFD8500 SDK does not support Xamarin (see this thread from last
year for more info: https://developer.zebra.com/message/89514#89514). Looking at the SDK, it seems
nothing has changed in the past year.

Beyond that I’m afraid my Xamarin experience is limited, I extensively used reflection in the above post
and sample app to mimic the data types being returned by the scanner but I am uncertain if that would
work in Xamarin. There is a reflection namespace
(https://developer.xamarin.com/api/namespace/Java.Lang.Reflect/) but there are not too many posts /
pages I can see on Google to help with that. I had to use reflection to create some of the types e.g.
ScanDataCollection – if you can create those with Xamarin without reflection then it might be simpler to
use a wrapper class: http://techdocs.zebra.com/emdk-for-xamarin/2-4/api/barcode/ScanDataCollection/

Hope that helps.

Reply

https://darryncampbell.co.uk/2017/03/01/instrumented-testing-and-the-zebra-emdk-barcode-api/?replytocom=9#respond
http://darryncampbellblog.wordpress.com/
https://darryncampbell.co.uk/2017/03/01/instrumented-testing-and-the-zebra-emdk-barcode-api/#comment-10
https://darryncampbell.co.uk/2017/03/01/instrumented-testing-and-the-zebra-emdk-barcode-api/?replytocom=10#respond
https://darryncampbell.co.uk/2017/03/01/instrumented-testing-and-the-zebra-emdk-barcode-api/#comment-11
https://darryncampbell.co.uk/2017/03/01/instrumented-testing-and-the-zebra-emdk-barcode-api/?replytocom=11#respond
http://darryncampbellblog.wordpress.com/
https://darryncampbell.co.uk/2017/03/01/instrumented-testing-and-the-zebra-emdk-barcode-api/#comment-12
https://developer.zebra.com/docs/DOC-2813
https://developer.zebra.com/message/89514#89514
https://developer.xamarin.com/api/namespace/Java.Lang.Reflect/
http://techdocs.zebra.com/emdk-for-xamarin/2-4/api/barcode/ScanDataCollection/
https://darryncampbell.co.uk/2017/03/01/instrumented-testing-and-the-zebra-emdk-barcode-api/?replytocom=12#respond

17/07/2020 Instrumented Testing and the Zebra EMDK Barcode API – DARRYN CAMPBELL

darryncampbell.co.uk/2017/03/01/instrumented-testing-and-the-zebra-emdk-barcode-api/ 7/12

 Bashar Asaad says:

15th February 2018 at 6:51 am

Thank you Darryn, interesting information and I would ask you about the Android Studio configuration
because i tried to run your example on my android studio but i get the same error when i try to run the test
:
java.lang.NoClassDefFoundError:

com.darryncampbell.InstrumentedEMDKBarcodeTesting.MainActivity
at com.darryncampbell.InstrumentedEMDKBarcodeTesting.ExampleInstrumentedTest.
(ExampleInstrumentedTest.java:36)
at java.lang.reflect.Constructor.constructNative(Native Method)
at java.lang.reflect.Constructor.newInstance(Constructor.java:423)
at org.junit.runners.BlockJUnit4ClassRunner.createTest(BlockJUnit4ClassRunner.java:217)
at org.junit.runners.BlockJUnit4ClassRunner$1.runReflectiveCall(BlockJUnit4ClassRunner.java:266)
at org.junit.internal.runners.model.ReflectiveCallable.run(ReflectiveCallable.java:12)
at org.junit.runners.BlockJUnit4ClassRunner.methodBlock(BlockJUnit4ClassRunner.java:263)
at org.junit.runners.BlockJUnit4ClassRunner.runChild(BlockJUnit4ClassRunner.java:78)
at org.junit.runners.BlockJUnit4ClassRunner.runChild(BlockJUnit4ClassRunner.java:57)
at org.junit.runners.ParentRunner$3.run(ParentRunner.java:290)
at org.junit.runners.ParentRunner$1.schedule(ParentRunner.java:71)
at org.junit.runners.ParentRunner.runChildren(ParentRunner.java:288)
at org.junit.runners.ParentRunner.access$000(ParentRunner.java:58)
at org.junit.runners.ParentRunner$2.evaluate(ParentRunner.java:268)
at org.junit.runners.ParentRunner.run(ParentRunner.java:363)
at org.junit.runners.Suite.runChild(Suite.java:128)
at org.junit.runners.Suite.runChild(Suite.java:27)
at org.junit.runners.ParentRunner$3.run(ParentRunner.java:290)
at org.junit.runners.ParentRunner$1.schedule(ParentRunner.java:71)
at org.junit.runners.ParentRunner.runChildren(ParentRunner.java:288)
at org.junit.runners.ParentRunner.access$000(ParentRunner.java:58)
at org.junit.runners.ParentRunner$2.evaluate(ParentRunner.java:268)
at org.junit.runners.ParentRunner.run(ParentRunner.java:363)
at org.junit.runner.JUnitCore.run(JUnitCore.java:137)
at org.junit.runner.JUnitCore.run(JUnitCore.java:115)
at android.support.test.internal.runner.TestExecutor.execute(TestExecutor.java:58)
at android.support.test.runner.AndroidJUnitRunner.onStart(AndroidJUnitRunner.java:375)
at android.app.Instrumentation$InstrumentationThread.run(Instrumentation.java:1701)

Reply

 darryncampbell says:

22nd February 2018 at 11:03 am

I couldn’t tell you when it stopped working but it looks like at some point gradle started requiring you to
specify “provided” files for tests separately. I have fixed this at
https://github.com/darryncampbell/Instrumented-EMDK-Barcode-
Testing/commit/1870906237f36540936c392949a8ca553879d2d3.

Thank you for raising.

https://darryncampbell.co.uk/2017/03/01/instrumented-testing-and-the-zebra-emdk-barcode-api/#comment-65
https://darryncampbell.co.uk/2017/03/01/instrumented-testing-and-the-zebra-emdk-barcode-api/?replytocom=65#respond
https://darryncampbell.co.uk/2017/03/01/instrumented-testing-and-the-zebra-emdk-barcode-api/#comment-69
https://github.com/darryncampbell/Instrumented-EMDK-Barcode-Testing/commit/1870906237f36540936c392949a8ca553879d2d3
https://darryncampbell.co.uk/2017/03/01/instrumented-testing-and-the-zebra-emdk-barcode-api/?replytocom=69#respond

17/07/2020 Instrumented Testing and the Zebra EMDK Barcode API – DARRYN CAMPBELL

darryncampbell.co.uk/2017/03/01/instrumented-testing-and-the-zebra-emdk-barcode-api/ 8/12

Reply

 TJ says:

9th July 2018 at 7:01 am

Hi Darryn,

Thanks for your handwork. it is truly appreciated.

trying to run successfulScan() of ExampleInstrumentedTest.java but endup with below error. can you
suggest how to proceed,

Installation failed with message INSTALL_FAILED_MISSING_SHARED_LIBRARY: Package couldn’t be
installed in /data/app/com.darryncampbell.testingproofofconcept-1: Package
com.darryncampbell.testingproofofconcept requires unavailable shared library com.symbol.emdk; failing!.

Reply

 darryncampbell says:

9th July 2018 at 7:48 am

Hi, couple of things to check:
– You have EMDK for Android installed (you should see add-ons for symbol_emdk under your
Android add-ons folder, e.g. mine is C:\Users\darry\AppData\Local\Android\Sdk\add-ons on
Windows
– You are running on a Zebra device which supports EMDK

Reply

 Serge says:

18th October 2019 at 4:51 pm

Hi Darryn,

Thank you for your very helpful post.
You mentionned “Unfortunately, as previously mentioned no full emulators are available for industrial
mobility devices and integration with test frameworks is not offered out of the box.”.
Do you have any lead to be able to run it on an emulator? Your post having 2.5years now, hoping there
were some upgrade ^^’
The main issue being the EMDKManager trying to get info about device scanner when obviously,
emulator doesn’t have one.
Thanks in advance for your help

Reply

 darryncampbell says:

18th October 2019 at 7:11 pm

https://darryncampbell.co.uk/2017/03/01/instrumented-testing-and-the-zebra-emdk-barcode-api/?replytocom=69#respond
https://darryncampbell.co.uk/2017/03/01/instrumented-testing-and-the-zebra-emdk-barcode-api/#comment-143
https://darryncampbell.co.uk/2017/03/01/instrumented-testing-and-the-zebra-emdk-barcode-api/?replytocom=143#respond
https://darryncampbell.co.uk/2017/03/01/instrumented-testing-and-the-zebra-emdk-barcode-api/#comment-144
https://darryncampbell.co.uk/2017/03/01/instrumented-testing-and-the-zebra-emdk-barcode-api/?replytocom=144#respond
https://darryncampbell.co.uk/2017/03/01/instrumented-testing-and-the-zebra-emdk-barcode-api/#comment-1049
https://darryncampbell.co.uk/2017/03/01/instrumented-testing-and-the-zebra-emdk-barcode-api/?replytocom=1049#respond
https://darryncampbell.co.uk/2017/03/01/instrumented-testing-and-the-zebra-emdk-barcode-api/#comment-1050

17/07/2020 Instrumented Testing and the Zebra EMDK Barcode API – DARRYN CAMPBELL

darryncampbell.co.uk/2017/03/01/instrumented-testing-and-the-zebra-emdk-barcode-api/ 9/12

Hi Serge, I have since published https://developer.zebra.com/blog/test-your-zebra-scanning-
application-emulator on the official developer portal. To summarize, although there is no Zebra
emulator available it IS possible to test applications that use DataWedge to interface with the
scanner on an emulator. Further, DataWedge is the recommended approach for adding scanning to
your application, see the big red box at https://techdocs.zebra.com/emdk-for-android/7-
4/guide/about/.

Regarding your specific question, there are still no plans to release an official emulator image for
Zebra devices and no plans to support EMDK on any emulator.

Reply

Leave a Reply
Your email address will not be published. Required fields are marked *

Comment

Name *

Email *

Website

 Notify me of follow-up comments by email.

 Notify me of new posts by email.

Post Comment

SEARCH

https://developer.zebra.com/blog/test-your-zebra-scanning-application-emulator
https://techdocs.zebra.com/emdk-for-android/7-4/guide/about/
https://darryncampbell.co.uk/2017/03/01/instrumented-testing-and-the-zebra-emdk-barcode-api/?replytocom=1050#respond

