
Disabling GMS features using MX

Devices with Google Mobility Services (GMS) are becoming increasingly popular in the Enterprise
space, these are devices which have Google’s proprietary suite of applications and services built in
and can provide your enterprise deployment with a powerful foundation on which to build your line
of business applications and workflow. Exactly why an enterprise would choose GMS over non-GMS
(also called the Android Open Source Project, AOSP) is outside the scope of this blog: you might wish
to deploy “managed” Android devices (https://enterprise.google.com/android/solutions/purpose-
built/), you may be swayed by the additional protection offered by Play Protect
(https://www.android.com/play-protect/) or your applications might simply require Google Maps
and enhanced location precision but whatever your reasons, the prerequisite assumption is you
have chosen a deployment incorporating GMS devices.

Although GMS incorporates an ever expanding range of features, some of the most popular features
are listed below:

 Google Play Services APIs including:
o Firebase Cloud Messaging
o Fused Location API
o Geocoding API
o Google Maps API
o Google Cast API

 Google Play Store
 Google Play Protect
 Google Chrome (& safe browsing)
 Gmail
 Voice recognition

Having chosen GMS devices, many customers find they wish to selectively block certain
functionality and applications; this blog aims to inform the administrator exactly how functionality
can be selectively disabled and the implications of doing so.

Why disable GMS features at all?

GMS features as an overall suite are extremely powerful, so much so that arguably a consumer
smartphone is not fit for purpose without them. As we see Google increasingly concentrate on the
Enterprise market, more and more enterprise functionality will make its way into play services for
example the managed play store or support for managing purpose-built devices.

You may wish to selectively disable GMS features to:

 Prevent automatic application updates from the Play Store
 Prevent the user from accessing specific functionality e.g. the News app
 Control whether your devices location is visible to Google by e.g. disabling the fused location

API
 Prevent some ‘Share’ options being displayed to the user e.g. prevent sharing to drive to

avoid the user copying off sensitive data
 Prevent access to Google+ as it is not relevant to the employee’s work.

And many other use cases

How to disable GMS features

There are 3 steps to disabling GMS features:

1. Determine which packages represent the features you wish to disable
2. Disable these packages using the MX App Manager (http://techdocs.zebra.com/emdk-for-

android/6-3/mx/appmgr/); as with any Zebra ‘manager’ this can be called by stage now,
during device configuration or at runtime through our EMDK API.

3. Restart the device

Determining which packages to disable
Unfortunately there is not a public reference on which Android packages are included in GMS
devices and the functionality of each, there will therefore unfortunately be some degree of trial and
error to determine which packages require disabling. To add to this, the packages which comprise a
GMS build vary from desert to desert so you may need separate configurations for each desert if
your deployment contains different android versions.

To aid in the ‘trial and error’ I have put together an application which lists all the system apps
installed on your Zebra device and allows you to disable or enable them:
https://github.com/darryncampbell/Disable-System-Apps , there is also the ability to define your
own set of applications / package names and for more information see the readme
(https://github.com/darryncampbell/Disable-System-Apps/blob/master/README.md):

To determine which packages are installed on your device then you can run the following command
with your device connected to adb:
adb shell “pm list packages -f”
You can of course combine this with grep for a more concise output:
Adb shell “pm list packages -f | grep com.android

You will get an output something like this (obtained from my TC51 GMS):
package:/system/priv-app/BTPairingUtility/BTPairingUtility.apk=com.symbol.btapp
package:/data/app/com.google.android.youtube-1/base.apk=com.google.android.youtube
package:/system/app/SampleExtAuthService/SampleExtAuthService.apk=com.qualcomm.qti.auth.sample
extauthservice
package:/system/priv-
app/com.symbol.mxmf.csp.wifi/com.symbol.mxmf.csp.wifi.apk=com.symbol.mxmf.csp.wifi
package:/system/priv-app/AppGallery/AppGallery.apk=com.rhomobile.appgallery
package:/system/priv-app/com.symbol.mxmf/com.symbol.mxmf.apk=com.symbol.mxmf
package:/system/priv-
app/TelephonyProvider/TelephonyProvider.apk=com.android.providers.telephony
package:/system/priv-
app/com.symbol.mxmf.csp.usbmgr/com.symbol.mxmf.csp.usbmgr.apk=com.symbol.mxmf.csp.usbmgr
package:/data/app/com.afwsamples.testdpc-1/base.apk=com.afwsamples.testdpc
package:/data/app/com.google.android.googlequicksearchbox-
1/base.apk=com.google.android.googlequicksearchbox
package:/system/priv-app/CalendarProvider/CalendarProvider.apk=com.android.providers.calendar
package:/data/app/com.zebra.datawedgeexerciser-1/base.apk=com.zebra.datawedgeexerciser
package:/system/priv-
app/com.symbol.mxmf.csp.xmlmgr/com.symbol.mxmf.csp.xmlmgr.apk=com.symbol.mxmf.csp.xmlmgr
package:/system/priv-app/MediaProvider/MediaProvider.apk=com.android.providers.media
package:/system/priv-
app/GoogleOneTimeInitializer/GoogleOneTimeInitializer.apk=com.google.android.onetimeinitialize
r
package:/system/app/ModemTestMode/ModemTestMode.apk=com.qualcomm.qti.modemtestmode
package:/system/priv-
app/com.symbol.mxmf.csp.wirelessmgr/com.symbol.mxmf.csp.wirelessmgr.apk=com.symbol.mxmf.csp.wi
relessmgr
package:/system/app/shutdownlistener/shutdownlistener.apk=com.qualcomm.shutdownlistner
package:/system/priv-app/WallpaperCropper/WallpaperCropper.apk=com.android.wallpapercropper
package:/system/priv-app/CNEService/CNEService.apk=com.quicinc.cne.CNEService

I will attach my full output from my TC51 to the bottom of this blog. Many of these will be self-
explanatory, for example:
Com.google.android.apps.plus disables the Google+ application and the ability to Share to Google+
Com.android.location.fused disables the fused location provider available through the Location
Services API

And some may be less obvious, for example:
Com.google.android.googlequicksearchbox disables the ability to web search for a highlighted word
outside of Chrome

Disable these packages using the MX App Manager

The MX app manager (http://techdocs.zebra.com/emdk-for-android/6-3/mx/appmgr/) can be used
to disable specific packages using the following profile:

<characteristic type="Profile">
 <parm name="ProfileName" value="ApplicationManager"/>
 <parm name="ModifiedDate" value="2017-01-25 08:07:34"/>
 <parm name="TargetSystemVersion" value="6.0"/>
 <characteristic type="AppMgr" version="4.4">
 <parm name="emdk_name" value="AppManager"/>
 <parm name="Action" value="DisableApplication"/>

 <parm name="Package" value="com.android.sampleApplication"/>
 </characteristic>
</characteristic>

As mentioned earlier, you can initiate this profile as part of your device configuration (via StageNow)
or at runtime using the EMDK. If you are using the test application at
https://github.com/darryncampbell/Disable-System-Apps then this functionality is part of that
application.

Here is a before and after of disabling all GMS applications on my TC51 Marshmallow device:
All GMS packages enabled:

All GMS packages disabled:

There are 6 different types of applications installed on my device:

 Applications which are part of GMS, these have disappeared between and include Chrome,
Maps, Gmail etc.

 Applications which are part of the standard Android AOSP continue to be present, e.g. File
Browser, Gallery and Settings

 Applications which are pre-loaded by Zebra as part of the Zebra BSP and provide value adds
to Zebra users e.g. the Bluetooth pairing utility, StageNow. These remain unaffected.

 Applications I have developed myself and side-loaded to the device, with the common
coffee cup icon remain unaffected.

 Applications downloaded from the Google Play store, e.g. ZXing (Barcode Scanner): These
remain on the device despite the play store itself being disabled but are no longer subject to
being automatically updated.

 Applications available from Zebra which have been post-loaded onto the device, e.g.
Enterprise Browser remain unaffected.

Applications which rely on GMS services such as the fused location provider no longer report a fused
position, as evidenced from this before / after screenshot of my location API exerciser,
https://github.com/darryncampbell/Location-API-Exerciser.

Note: I have redacted some of the location precision for privacy.

Restart the device
Notice how Google Duo is available in the screenshot illustrating all the GMS packages being
enabled, this is curious behaviour since Duo does not appear after a device restart on TC51.
Similarly, I have observed other strange behaviour after enabling some packages e.g. the photos
application failed to fully start. For these reasons, I advise rebooting your device after making any
changes to the enabled or disabled packages.

Other considerations
 Enterprise Browser on Marshmallow will continue to work even after

“com.google.android.webview” has been disabled. I am surprised by this since EB depends
on the system webview but this behaviour may change as the OS is updated to Nougat and
‘O’ where the webview provider is provided by the Chrome APK.

 As far as I know the list of applications which are part of GMS for each OS flavour is
proprietary information to Google so whilst it can be fairly straight forward to determine
through trial and error, I cannot go into extensive detail in this blog. If you require the list of
GMS applications on each OS flavour, work with your sales engineer who may be able to
help.

 Android’s Device Policy Manager API
(https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html)
contains several methods related to enabling system apps. This is complementary but
separate from the enabling and disabling system apps discussed in this blog and is
concerned with system apps disabled whilst provisioning an Android managed device.

